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I. Introduction 
Non-truth-telling behaviors are common in matching mechanisms. Roth and 

Sotomayor (1990, Chapter 4) prove, in general, “the impossibility of a ‘strategy proof’ 

stable mechanisms”1. In school choice or college admission, although mechanism can 

be strategy-proof from the student side, non-truth-telling can still be the equilibrium 

strategy in quite a few cases (Ergin and Sonmez, 2006; Haeringer and Klijn, 2009, etc.). 

Non-truth-telling behaviors are also widely observed in experimental lab (Chen and 

Sonmez, 2006; Klijn, Pais and Vorsatz, 2013, etc.), and in reality. For example, China’s 

college admission is still non-strategy-proof, although the reform is directed toward 

strategy-proof (Chen and Kesten, 2017). 

* Corresponding author at: University of Pittsburgh, Pittsburgh, USA. E-mail address: swwang@pitt.edu

1 Conceptually, strategy-proof implies in a mechanism, all the players have dominant strategies and can avoid the 
complication of figuring out contingent equilibrium strategy. Truth-telling implies the dominant strategy is the 
truth-telling (report truly preference order). Therefore, a truth-telling mechanism must be strategy-proof, but not 
vice versa.  
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Several questions can be asked, given the prevalence of non-truth-telling behavior: 

Are there any general patterns of non-truth-telling behaviors? Under what environment 

people choose a (specific) non-truth-telling behavior? How do those behaviors perform 

compared with truth-telling and other behaviors? Should we design mechanisms 

promoting some specific non-truth-telling behaviors? Those questions are not fully 

explored in the literature and still wait for good answers. 

In this paper we highlight one specific non-truth-telling behavior: the sorting 

behavior. Sorting behavior is for a player to put his or her most preferred achievable 

matching objective as the first choice. Sorting behavior is well (i.e., almost uniquely) 

defined in a matching mechanism where the stable matching is unique2: It is for players 

to put their unique stable-matched objective as the first choice. 

Sorting behavior and truth-telling behavior are extremes on the spectrum of 

strategic behaviors. Taking the example of college admission, truth-telling behaviors 

need to list all colleges in the order of student’s true preference, with the ignorance of 

preferences of other students and priorities of colleges. On the contrary, sorting 

behavior need information of all other student preferences and all school priorities, 

because the stable matching is derived from it.  

Therefore, it is easy to argue that sorting behaviors are too sophisticated for players 

to figure out, let alone be willing to implement it. But first, we need to acknowledge 

that truth-telling can also be cognitively restrictive 3 . Consider Chinese college 

admission. There are over 2,000 colleges in China, and the choice set for each student 

can be as large as over 1,000. (Notice that we’ve already ignored choosing dozens of 

majors for any given college.) Obviously, students can only choose from a relatively 

small chosen set of colleges, a way of thinking leading to sorting behaviors. In addition, 

sorting behaviors sometimes can be simplified significantly due to mechanism features, 

as happened in Chinese college admission: college priorities are solely determined by 

rankings of college entrance exam (CEE) total scores. Therefore, students can figure 

out achievable colleges (or rule out unachievable ones), by attending mock exams, and 

by searching often publicly-announced score distribution after the exam.4 In a smaller 

                                                           

2 For example, when the school/college priorities are acyclic (Haeringer and Klijn, 2009, Theorem 7.3). 

3 Li (2017) argues that a strategy-proof mechanism may not be obviously strategy-proof (OSP), therefore, still 
subject to cognitive limitations of agents. Ashlagi and Gonczarowski (2017) and Troyan (2016) argues that stable 
matching mechanisms are in general not obviously strategy-proof, and require acyclic assumptions about 
preferences in order to be OSP-implemented. Note that even under acyclic assumption, mechanisms must be 
implemented in a specific way to be OSP. 

4 All the provinces now adopt “preference submission after score announcement”. The two latest provinces 
making transformation are Beijing (in 2015) and Shanghai (in 2017). All other provinces completed the 
transformation in 2013. 
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matching game, sorting behavior can be even easier to implement given relatively small 

information burden. 

So if sorting behavior is not difficult to implement, would agents be willing to 

choose it? The answer is yes for a broad class of matching mechanism. Back to Roth 

and Sotomayor (1990), sorting behavior has been proved to be equilibrium strategy for 

women in a men-optimal stable matching mechanism (Theorem 4.15). In Ergin and 

Sonmez (2006), sorting behavior is proved to be an equilibrium strategy under non-

strategy-proof Boston mechanism (Theorem 1)5. Haeringer and Klijn (2009) consider 

the constrained school choice, where the number of schools a student can submit are 

binding constrains. They prove that under Top Trading Cycles (TTC) mechanism, any 

equilibrium given a shorter length of allowed preference list is also an equilibrium given 

a lengthier one. One immediate implication of it is that sorting behavior can be Nash 

equilibrium under the strategy-proof TTC mechanism. 

   However, sorting behavior has not been the focus of most studies until now. 

Literature has centered on designing strategy-proof mechanisms and promoting truth-

telling behaviors. Non-strategy-proof mechanisms are usually regarded as undesirable, 

and various non-truth-telling behaviors regarded as nuisance. Empiricists have 

additional reasons to ignore non-truth-telling behaviors: they are difficult to classify 

and identify in a general way6. Non-truth-telling equilibrium is often not unique, and 

among them, sorting behavior is also not unique.  

   Our paper design a matching environment to examine sorting behavior. Sorting 

behavior is unique7 due to acyclic school priority. We include both truth-telling and 

non-truth-telling mechanisms, while under truth-telling mechanisms, non-truth-telling 

equilibrium exists. We are also interested in how information would affect the choice 

of sorting behaviors versus other including truth-telling behaviors.  

The experiment design is also motivated by China’s college admissions system. 

In the system, students are uniformly ranked and matched to schools by their total score 

earned in the national College Entrance Examination (CEE). Still, there are disparities 

with this system across time and regions, mainly in two dimensions: preference 

submission timing and the matching mechanism. Preferences can be submitted before 

                                                           

5 Wu and Zhong (2017) show that, under the Boston mechanism, if schools have acyclic priorities and students 
have some degree of preference homogeneity, sorting behavior is the only Nash equilibrium. 

6 A few experimental papers identify several patterns of non-truth-telling behaviors. Chen and Sonmez (2006) 
identify district school bias (DSB) and small school bias (SSB). Calsamiglia et al. (2010) consider modifications of 
truth-telling behavior, e.g., preservation of ranking and truncated truth-telling. Klijn et al. (2013) study protective 
strategy (i.e., max-min strategy). The only one focusing on sorting behavior is Pan (2017). 

7 More precisely, it is unique if we only consider the first choice. However, as we show later, in theory, admission 
by first choice is often equilibrium outcome, and in experimental results, first choice admission is very high under 
sorting behavior. 
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the exam, after the exam but before knowing the exam scores, or after knowing the 

exam scores. The two most common matching mechanisms used have been the Boston 

mechanism (known as mechanism “without parallel options” in China) and Serial 

Dictatorship mechanism (known as mechanism “with parallel options” in China). 

However, the SD mechanism nowadays is a constrained one, or half-way between 

Boston and SD (Chen and Kesten, 2017). Strategic plays have long been regarded as 

critical for success entrance into colleges. 

Inspired by China’s college admission, we experimentally investigate four 

matching environments: Boston under complete information (BOS_C for short) and 

incomplete information (BOS_I), and Serial Dictatorship under complete information 

(SD_C) and incomplete information (SD_I). Complete information corresponds to 

students submitting their preference ranking after the score realization, while 

incomplete information corresponds to submission before the score realization. College 

priorities are all determined uniformly by student score, the strongest case of acyclic 

priorities. Sorting behavior is defined as, for a student, the most preferred achievable 

school given available information.  

   We found, first, sorting behavior is prevalent in any of four environments. Under 

non-strategy-proof Boston mechanism, around two thirds of students play it. Under 

strategy-proof SD mechanism, the proportion is much lower, but still around 20 percent 

of students play it, while around two thirds play truth-telling. Information makes no 

difference on the choice of sorting behaviors. Second, sorting behavior leads to a high 

first choice admission rate (near 90 percent)., and makes its players as well off as truth-

telling behaviors, under any mechanism. Third, an increase in sorting behavior 

improves the social welfare under Boston mechanism, but not under SD mechanism. 

   Here are some cautions. Our results do not support that Boston mechanisms perform 

better that SD mechanisms. In fact, we found in our experiment that SD mechanisms 

(where truth-telling dominates) always perform better than Boston mechanism (where 

sorting behavior dominates). Furthermore, when all players switch to truth-telling, 

social welfare is generally higher than when all players play sorting behavior. Sorting 

behavior is used to align the interests of players, when players are not willing to use 

truth-telling because they are afraid of being explored by other players. 

  The paper is organized as following: in Section II we summarize related literature 

and lay out theories on sorting behavior under various mechanisms. Section III is 

devoted to describe experimental design and measurements for gauging individual 

behavior as well as matching outcomes. Section IV presents various patterns of non-

truth-telling behaviors and highlight sorting behavior. Section V focuses on how sorting 

behavior affect individual welfare. Section VI presents matching outcome under 

various environments and examine how varying behavior mixture would affect social 
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welfare. Section VII extends our measure of sorting behavior to include a broader class 

of misreporting behavior. Section VIII concludes the paper. 

II. Related Literature 
We summarize literature on sorting behavior under Boston and SD mechanisms 

with complete and incomplete information. We first highlight theoretical predictions 

which address sorting behavior under various mechanisms. We then discuss 

experimental literatures concerning non-truth-telling behaviors, including sorting 

behavior. Finally, we brief literature on matching outcomes under various mechanisms.  

Theoretical Predictions 
In the following we focus on matching environments where school priorities are 

acyclic (in the strongest sense). The immediate implication is that stable matching is 

unique (Haeringer and Klijn, 2009).  

Ergin and Sonmez (2006, Theorem 1) prove that under Boston mechanism, sorting 

behavior is a Nash equilibrium which implements the stable matching. It immediately 

implies that under such an equilibrium, students are all admitted by their first choice. 

Haeringer and Klijn (2009) prove that under Top Trading Cycles (TTC) mechanism, 

any equilibrium under a shorter length of allowed preference list is also an equilibrium 

under a lengthier one. This immediately implies that sorting behavior, the Nash 

equilibrium with allowed preference list containing only one school, is also Nash 

equilibrium for TTC without any constrains. By Theorem 6.4 in their paper, if school 

priorities are acyclic, constrained (and unconstrained) TTC implement stable matching 

outcomes under Nash equilibrium. Therefore, students are also admitted by their first 

choice under sorting behaviors. Finally, note that under acyclic school priorities, TTC 

mechanism is mechanically equivalent to SD mechanism (Abodulkadiroglu and 

Sonmez, 2003).  

We summarize those theories as the following: 

 

Proposition 1: Under Boston mechanism and SD mechanism with acyclic school 

priorities and complete information, sorting behavior is Nash equilibrium and 

implements stable matching, and students are admitted by their first choice. 

  

Furthermore, Wu and Zhong (2017, Proposition 2) prove that under Boston 

mechanism, if college slots are scarce resources, sorting behavior is the unique Nash 

equilibrium. College slots are scarce resources if the number of students preferring 

admission (by some colleges) to non-admission is larger than total number of slots. 
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Although our experimental design does not satisfy this condition, their proposition still 

highlights the important of sorting behavior in some real situations, e.g., China’s 

college admission. 

We also want to highlight one interesting theory result. Consider a mixture of truth-

telling behavior with sorting behavior under SD with complete information (SD_C). 

That is, players either play truth-telling or sorting behavior. It is easy to see that such a 

strategy profile also forms a Nash equilibrium. We state the following proportion 

without proof: 

 

Proposition 2: Any mixture of truth-telling and sorting behavior form a Nash 

equilibrium implementing stable matching outcome under SD mechanism with 

complete information. 

 

SD_C mechanism is robust to any mixture of truth-telling and sorting behavior, 

while other mechanisms (e.g., Boston mechanism) may not. This is definitely a 

desirable property for SD_C. 

The situation under incomplete information is more complicated. Usually, sorting 

behavior is not Nash equilibrium. Lien et al. (2017, Proposition 3.3) prove that under 

Boston mechanism with incomplete information (BOS_I), if students have 

homogeneous preference over schools, and each school has one slot, Boston 

mechanism implement ex-ante fair matching outcomes only if sorting behaviors are 

used by all students, except the one with the least score. Here ex-ante fairness is defined 

as stable matching outcome with regard to expected scores. Sorting behavior is 

accordingly defined as sorting to expected scores (more details in Section III.2&3). 

However, their paper’s Theorem 3.2 states that ex-ante fairness can only be 

implemented under very restricted conditions, i.e., students have almost no competition 

relationship (i.e., any overlapping on realized scores) with each other8. The implication 

of these two theories is that sorting behavior are almost surely not Nash equilibrium 

under BOS_I. Under SD_I, since truth-telling is always dominant, it is easy to prove 

that sorting behavior may not be Nash equilibrium9.  

                                                           

8 Both Proposition 3.3 and Theorem 3.2 can be extended to more general cases, i.e., multi-slot school, and some 
degree of preference heterogeneity, see Section 5 in Lien et al. (2017). 

9 Consider one player (student A) deviates from sorting behavior to truth-telling, given other players still play sorting 
behavior. His realized score is larger than some students with higher expected score, among whom student B has the 
highest expected scores. Suppose for simplicity all students have the same ordinal preference. If everyone plays 
sorting behaviors, all get their ex-ante fair school. When player A deviates to truth-telling, he can switch to the ex-
ante fair school belonging to student B, a more preferred school. Sorting behavior is not Nash equilibrium. 
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We summarize our findings as following: 

 

Proposition 3: Under Boston mechanism and SD mechanism with incomplete 

information, sorting behavior may not be Nash equilibrium. 

 

Although sorting behavior may not be a Nash equilibrium, it can still server as a 

focal point, especially when there is no obvious equilibrium strategy, e.g., under BOS_I. 

We will see what happens in the lab under mechanisms with incomplete information 

(i.e., BOS_I and SD_I). 

Non-truth-telling in experiments 
Experimental literature usually focuses on welfare consequences (efficiency and 

stability) of the whole matching mechanism, and often address truth-telling behavior. 

The study of non-truth-telling behavior is usually their byproduct, with only a few 

exceptions directly addressing non-truth-telling behaviors. Chen and Sonmez (2006) 

single out several patterns of non-truth-telling behavior under Boston, TTC and Gale-

Shapley mechanisms, e.g., small school bias (SSB) and district school bias (DSB). Pais 

and Pinter (2008) consider SSB behavior as well as priority school bias (PSB, i.e., 

students rank schools where they have priority higher in the submitted rank) under 

Boston, TTC and GS mechanisms with various information. Calsamiglia et al. (2010) 

consider modifications of truth-telling behavior, e.g., preservation of ranking and 

truncated truth-telling, under constrained school choice. Klijn et al. (2013) study how 

an individual's risk preference influences his/her strategy, especially the choice of 

protective strategy (i.e., max-min strategy) under Gale–Shapley and Boston mechanism. 

Neither of them highlights sorting behavior as a general pattern of non-truth-telling 

behavior. 

Featherstone and Niederle (2014) explore Boston mechanism (as well as others) 

with incomplete information, and argue that non-truth-telling equilibrium is difficult to 

achieve, because students fail to figure out equilibrium strategy. However, they focus 

on students’ second choice - what they called the “skip the middle” bias. Students in 

fact work quite well in choosing their first choice (see their Table 2), supportive to our 

arguments. Second choice are important in their environment, because they assume 

homogenous ordinal student preference, which may intensify competitions among 

students. This is not the case in our environment, where we only assume partially 

aligned student preferences. Nevertheless, we never argue sorting behavior is 

equilibrium strategy under BOS_I as they did in their setup. 
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Pan (2017) is the closest paper to ours. She highlights the “sorting strategy” 

(Definition 5) and find that sorting strategy is skewed by overconfidence under BOS_I, 

resulting in more ex-ante unfair matchings than other matching environments. Our 

results agree with hers in that BOS_I in generally performs worse than other 

mechanisms. But our results do not support that the reason is that students usually over-

report their first choice due to overconfidence. In fact, students play quite well in 

positioning their first choice. Under BOS_I, more than 60 percent of students fairly 

report their first choice, only 20 percent of students up-report, and 17 percent of 

students even down-report (See Section VII). There is no evidence overconfidence 

dominates. Furthermore, by increasing the proportion of sorting behavior, the whole 

matching outcome becomes better off. This could not happen when sorting behavior is 

driven by overconfidence. We believe in a more realistic environment as we designed, 

sorting behavior is not only driven by overconfidence, but also by other factors, e.g., 

risk attitude.10 

Matching mechanisms and matching outcome 
Among huge literature addressing this issue, we focus on those dealing with the 

effect of incomplete (or imperfect) information on matching mechanisms.  

One important source of incomplete information is uncertain school priorities. For 

examples, schools may have indifferent priorities which need to be solved by random 

tie-breaking rules. Edril and Ergin (2008) found that when random tie-breaking is 

introduced, Gale-Shapley mechanism may generate inefficient stable outcomes. 

Abdulkadiroglu et al. (2011) prove that when students have the same ordinal 

preferences (but different cardinal preferences) and schools use random tie-breaking 

rule, Boston mechanism Pareto dominates Gale-Shapley mechanism. China’s college 

admission provides another important example of uncertain school priorities: school 

priorities may be determined by CEE exam scores which can only be realized after 

preference submission. BOS_I can be more efficient than other mechanisms under 

conditions consistent with Abdulkadiroglu et al. (2011) (Lien et al., 2016; Chen, 2017). 

In addition to efficiency, Lien et al. (2017) raise the issue of ex-ante fairness. Ex-ante 

fairness is defined as stable matching as usual with the only exception that school 

priorities are determined by ranking students according to their expected scores (or, 

arguably, their true abilities), instead of score realization. They prove that BOS_I can 

be ex-ante fairness than other mechanisms, but the edge may be small. In lab 

                                                           

10 Our experimental design differs from Pan (2017) in several ways: First, Pan’s design assumes homogenous 
ordinal student preferences, and student preferences are (obviously) public information. Our design allows for 
partially aligned student preference; only the aligned part of student preference is publicly known. Second, our 
design contained 36 students, with 7 schools and multiple slots for each school, while Pan’s design only contains 5 
students and 5 unit-slot schools.  
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experiments, Lien et al. (2016) provide positive evidence for both ex-ante efficiency 

and fairness advantage of BOS_I, while Pan (2017) provide negative results for ex-ante 

fairness of BOS_I. Our environments do not fit into the model of either Abdulkadiroglu 

et al. (2011) and Lien et al. (2017), but rather a mixture of both: student scores are 

different ex ante, which is not in Abdulkadiroglu et al, (2011), while students have 

heterogeneous ordinal preferences, which is not in Lien et al. (2017). We are interested 

in how this more realistic setup would generate results concerning efficiency and ex 

ante fairness. 

Another source of incomplete information is from private information of student 

preferences. Our setup also contains such elements: students only vaguely know others’ 

preference. Pais and Pinter (2008) found that TTC mechanism works better than Boston 

mechanism, and less sensitive to information. However, Featherstone and Nierderle 

(2014) found that, Boston mechanism under incomplete information can have higher 

efficiency than Deferred Acceptance (i.e., Gale-Shapley) mechanism, and can even 

induce more truth-telling. However, their setup is extreme: they not only assume school 

priorities are purely random drawn, but also student ordinal preferences. In our paper 

we do not find more truth-telling and higher efficiency under BOS_I than other 

mechanisms.  

III. Experimental Design and 
Measurement 

In this section we first describe our experiment design, and then explain how to 

identify sorting behavior in our setup. We also describe our methods to measure 

matching outcomes. 

III.1 Experimental Design 
Our experiment is designed to compare different student behaviors (in particular 

sorting behavior and truth-telling) and matching outcomes under different mechanisms. 

In particular, we implement a 2x2 design, Boston and SD mechanism under either a 

complete or incomplete information environment. For the complete information 

environment, preference submission is done after the exam and all the students’ scores 

are known. For the incomplete information environment, preference submission is done 

before the scores are known. For each treatment, we have 2 or 3 sessions, with 36 

students in each session. We have 10 sessions in total and each student only participated 

in one session. 
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Ranking/Mechanism Boston  Serial Dictatorship 

Complete  2 (N=72)  2 (N=72)  

Incomplete  3 (N=108) 3 (N=108)  

 

In the complete information setting, the scores for the 36 students in each session 

are independently drawn without replacement from integers between 105 and 140. Each 

student is informed of his/her ranking. In the incomplete information environment, the 

estimated scores for the 36 students in each session are independently drawn without 

replacement from integers between 105 and 140. Each student is informed of his/her 

estimated ranking. The actual score for each student is drawn from a uniform 

distribution -10 to +10 around his/her estimated score. The actual ranking is not 

revealed until the preference rankings are already submitted. 

In each session, there are 36 school slots across 7 schools A-G: 3 slots each at A 

and B, 5 slots at C and E, 6 slots at D and F, 8 slots in G. All students prefer A and B 

to the other five schools, which is common knowledge. Some students prefer A to B 

and some prefer B to A, but the proportion is not publicly known. Except the public 

information mentioned above, students only know his/her own preference ranking. The 

payoff structure is similar to Chen and Sönmez (2006) and the payoffs obtained are 

symmetric, i.e., each student gets the same payoff for the same preference ranking of 

choice. The actual monetary payment obtained is multiplied by 5 RMB from the payoff 

table. Schools always prefer students with higher (realized) scores. The payoff table is 

shown below. 

 

 Preference Ranking 

Payoff 
1 2 3 4 5 6 7 

16 13 11 9 7 5 2 

 

We ran paper-and-pencil experiments at Tsinghua University in China on May 

24th (2 sessions), June 1st (4 sessions) and June 2nd (4 sessions) of 2012. Each session 

lasted approximately an hour with a participation fee of 20 RMB. All sessions were 

conducted in Tsinghua University, School of Economics and Managements' 

Experimental Economics Laboratory (ESPEL).  

We also collected information from the students in a post-experiment survey 

including their experience (origin province, whether or not they took the college 

entrance exam, and year of college entrance exam if they did), gender, age, and major. 
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We use the three series of paired lotteries in Tanaka et al. (2010) for an incentivized 

elicitation of the prospect theory parameters. 

III.2 Identifying Sorting behavior 
Sorting behavior is for a player to put his most preferred achievable school as the 

first choice. This definition does not put restrictions on second, third and any other 

choices. In our setup, because students do not have full information of other students’ 

preference, the unique stable-matched (or fair) school is not fully observable for them. 

Another issue is what kind of stable matching we are talking about. There are two kinds 

of stable matching: stable matching with regard to realized scores, i.e., ex-post stable 

(or fair) matching; or stable matching with regard to estimated scores, i.e., ex-ante 

stable (or fair) matching. 

For the uncertain scores (or school priorities) issue, there is an obvious solution to 

pin down sorting behavior. For mechanisms with incomplete information, because 

students only know their estimated scores, their judgement on score priorities are only 

determined by their ranking of estimated scores. For mechanism with complete 

information, their judgement on school priorities are determined by their ranking of 

realized scores. 

For the issue of incomplete information on student preferences, we consider two 

alternative measures of sorting behavior, by relaxing the theoretical definition. First, 

we assume students only rely on public information to figure out their fair school, 

combined with information of their estimated or realized score ranking. Therefore, if a 

student is ranked (ex ante or ex post) among top 6, the total number of school A and B, 

which all students prefer to other schools, their achievable school set is {A, B}. 

Otherwise their achievable school set is {C, D, E, F, G}. Among their achievable school 

set, they choose their most preferred one according to the endowed school payoffs. For 

example, under an incomplete information setup, a student with an estimated score 

ranking as 5th, payoff for B as 16, payoff for A as 13, would be regarded as playing a 

sorting behavior if he chooses school B as the first choice. Or, under a complete 

information setup, a student with a realized score ranking as 10th, payoffs as C=9, D=11, 

E=7, F=5, G=2, is playing sorting behavior if he chooses school D as the first choice. 

Second, for experimental designer, by a hindsight, we can identify whether a 

student put his (ex-ante/ex-post) stable-matched (or fair) school as his first choice. The 

shortcoming of this de facto sorting behavior is obvious: students cannot deliberately 

choose it due to lack of information. Yet it is still useful, because at least in some degree, 

it answers the “what if” question: i.e., how sorting behavior (or deviation from it) would 
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affect individual matching outcome, if fair school is fully observable (or calculable) by 

agents11?  

In the later parts, we refer to the first measure of sorting behavior still as “sorting 

behavior”, and the second measure as “fair reporting”. Note that two measures 

converge to one when information on student preferences are fully revealed. 

A final note. Sorting behavior and truth-telling can be overlapped. It happens when 

a student’s true first choice is coincident with his fair school. When they overlap, truth-

telling is a stricter concept that sort-behavior: it requires all schools are listed in the true 

preference order. So we give a higher priority to truth-telling. That is, if a behavior can 

be both sorting behavior and truth-telling, we statistically identify it as truth-telling, not 

sorting behavior. 

III.3 Measuring Matching Outcomes 
For our purpose, it is important not only to measure (or evaluate) matching 

outcomes for the whole matching, as common in literature, but also to measure 

matching outcomes at individual level. We first discuss the latter one. The 

measurements at the system level is somehow an aggregation of measurements at 

individual level, so we discuss it subsequently. The evaluation of the system matching 

outcomes involves a simulation procedure, which we will discuss briefly at the end of 

this subsection. 

Measuring individual matching outcomes 
We consider two measures: one is related to fairness and the other to efficiency.  

The degree of mismatch is defined as the gap between the preference ranking of a 

student's matched school (in lab) and his/her fair school. Note that the sign of the degree 

of mismatch can be negative or positive, indicating down-matching or up-matching 

respectively. For example, a student’s fair school is C, which in his payoff table is 

ranked 3th, yet in the lab experiment he is matched to school A, which is ranked first 

in his payoff table. Then his degree of mismatch is 3-1=2, and he is up-matched. The 

measure is intuitive to see how far (above or below) a student is from his fair matching 

outcome, but the shortcoming is that it is based on (somehow arbitrary) ordinal number 

of preference rankings. 

We need to distinguish between environments with incomplete and complete 

information. For incomplete information, we use a student’s ex ante fair school to 

                                                           

11 No doubt, student behaviors would be different whether they are fully knowledgeable and choose fair school as 
the first choice cautiously, or maybe, they just try to guess the fair school and get it in a random way. Therefore, 
our results are only the best guess for the effect of this type of sorting behavior given our information setup. 
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calculate his/her degree of mismatch. Ex ante fair school can be derived, for example, 

by ranking students according to their estimated scores, and match them with schools 

by using SD mechanism. The matched school for each student is his/her ex ante fair 

school. For complete information, we consider a student’s ex post fair school. The 

algorithm is still by using SD mechanism but ranking students according to their 

realized scores.  

The relative payoff is defined as the proportion of a student’s payoff in the lab over 

his payoff under stable matchings. This measure complements what degree of mismatch 

leaves out, i.e., the “real monetary gain” (normalized to fair gain) a student has. Note 

that those two measures are positively correlated. 

Measuring system matching outcomes 
The welfare consequences of the matching outcome under a mechanism can be 

evaluated by both efficiency and fairness. For fairness, we consider both ex ante 

fairness and ex post fairness, i.e., fairness with regard to students’ estimated scores and 

to students’ realized scores. Note that both ex ante and ex post fairness schools are 

applicable for either complete or incomplete information. For experimental designers, 

either students’ estimated or realized scores are known after the experiments are done, 

for any environment. In fact, how each of those four mechanisms can achieve higher 

ex ante fairness as well as ex post fairness is a topic of a few previous studies (Lien et 

al., 2016; Pan, 2017; Wu and Zhong, 2014). 

We discuss measures for each of them. 

Efficiency. The (ex-ante) efficiency is calculated as the payoff per capita in a 

matching system. 

Ex-post Fairness. In the literature, fairness is measured by the number of blocking 

pairs. A blocking pair is a pair of student-school in which the student prefers the school 

to his own matched school, and the school either has an empty seat or gives a higher 

priority to this student than another student it admits. Here the school priority is solely 

determined by the students’ realized scores. In this paper, we adopt two measures of 

fairness in the same spirit as blocking pairs.  

(i) Ex-post Fairness by number of blocking pairs. Define (i, S) as a blocking pair 

for student if student i prefers school S to his matched school and his score is above the 

minimum score of all the students matched to school S. We then count the number of 

blocking pairs in a matching system. The lower the number of blocking pairs, the more 

fair the matching outcome.  

    However, we also consider another measure, which is the aggregation of our 

measure of fairness at individual level (See Section III.2).  
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    (ii) Ex-post Fairness by average absolute value of degree of mismatch. This 

measure is calculated by averaging absolute value of the degree of mismatch across all 

students. A higher degree of mismatch implies a lower level of fairness of the matching 

outcome. 

Some discussions on relations between those two measures are deserved. Although 

the two measures share the same spirit, they may not always be consistent. For example, 

consider 3 students, 1, 2 and 3, who are matched to 3 schools, A, B, and C. All the 

students have the same preference: A>B>C, and all the schools have the same priority: 

1>2>3. It is easy to calculate that among all the 6 possible matching outcomes, 

matching outcomes with the highest average degree of mismatch (i.e., highest 

unfairness by measure (ii)) are three: (3=A, 2=B, 1=C), (2=A, 3=B, 1=C), and (3=A, 

1=B, 2=C), with the value of 4/3. While by measure (i), the number of blocking pairs, 

only (3=A, 2=B, 1=C) has the highest degree of unfairness, with the value of 1 (versus 

2/3 for the other two). One may argue that (3=A, 2=B, 1=C) should be the only one 

most unfair, because it “reverses the whole matching order”: it put the best student into 

the worse school, and the worst student into the best school, and so on. Yet another one 

may argue that (3=A, 2=B, 1=C) can be fairer than (2=A, 3=B, 1=C) and (3=A, 1=B, 

2=C): In (3=A, 2=B, 1=C), at least student 2 is matched to his fair school, while in 

(2=A, 3=B, 1=C) and (3=A, 1=B, 2=C), all students are mismatched. We believe it is 

an important question to compare those two measures in general in the future study. 

Ex-ante Fairness. Ex-ante fairness is defined similarly as ex-post fairness, except 

that fair matchings are defined based on expected student scores instead of realized 

scores. We still use two alternative measures, i.e., average degree of mismatch, and 

average number of blocking pairs as we measure ex-post fairness. 

   Simulation Issues. The initial condition of our game is that students only know the 

distribution of scores. Under the BOS and SD with incomplete information 

environments, students have to base their strategy on such score uncertainties. Yet 

under the BOS and SD with complete information environments, students know their 

realized scores, and then submit their preference rankings. To make the incomplete and 

complete information environments comparable, we need to compare their matching 

outcome under the same prior score realizations. For the mechanisms under incomplete 

information, we only need to realize the matching outcome many times according to 

the score distribution, each time using the strategies of all students we observe in the 

lab, which is obviously fixed across different score realizations. Yet for the mechanisms 

under complete information, we have to consider the counterfactuals, i.e., how the 

students (or subjects) would response to all the possible score realizations we could not 

observe. One conjecture would be that students only respond to their realized score 

ranking, so for any given realized score ranking, students would play the same strategy 

as the one with the same realized score ranking we really observe in the lab. However, 
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it would be naïve to assume that the realized score ranking is the only determinant of 

behavior and the observed behavior is the only “true” strategy. We therefore simulate 

student behavior using some empirical patterns we found in the experimental data. As 

a whole, we consider five scenarios in which we generate student behaviors based on 

observed behaviors (or their patterns) in our experiments. More details about simulation 

methods are in Appendix A.  

IV. Patterns of Behaviors 

We now present first group of results concerning patterns of behaviors. We want 

to identify as many as possible patterns of behaviors. But we try to convince you that 

sorting behavior is the most prominent one among all the non-truth-telling behaviors. 

Table 1 shows the distributions of all behaviors patterns for each of four 

mechanisms (BOS_I/C, SD_I/C). Truth-telling plays a dominant role under two SD 

mechanisms, the strategy-proof mechanisms. There are 65% and 69% of all students 

playing truth-telling under SD_I and SD_C. Only 1% (1 person) play truth-telling under 

BOS_I, and the proportion is 11% (8 persons) for BOS_C. 

 

Table 1: Distribution of reporting behavior 

 BOS_I  BOS_C  SD_I  SD_C 
 # %  # %  # %  # % 

All Students            

Truth-telling 1 0.93  8 11.11  70 64.81  50 69.44 

Non-truth-telling 107 99.07  64 88.89  38 35.19  22 30.56 

Sorting 68 62.96  47 65.28  19 17.59  17 23.61 

Top 6 Students            

Truth-telling 1 5.56  7 58.33  15 83.33  10 83.33 

Non-truth-telling 17 94.44  5 41.67  3 16.67  2 16.67 

Sorting 15 83.33  3 25.00  3 16.67  2 16.67 

Risk averse 2 11.11  2 16.67  0 0.00  0 0.00 

Below top 6 Students            

Truth-telling 0 0.00  1 1.67  55 61.11  40 66.67 

Non-truth-telling 90 100.00  59 98.33  35 38.89  20 33.33 

Sorting 53 58.89  44 73.33  16 17.78  15 25.00 

Risk seeking type-I 11 12.22  1 1.67  6 6.67  2 3.33 

Risk seeking type-II 5 5.56  2 3.33  2 2.22  0 0.00 

Safe choice 7 7.78  5 8.33  5 5.56  0 0.00 

Equal slot switch 6 6.67  6 10.00  3 3.33  1 1.67 

Less slot switch 8 8.89  1 1.67  3 3.33  2 3.33 
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What we focus is, however, non-truth-telling behaviors. Under BOS_I and BOS_C, 

sorting behavior dominates: 63% and 65% of all students play sorting behavior under 

BOS_I and BOS_C. Under SD_I and SD_C, there are still 18% and 24% of all students 

play sorting-behavior, dominating all other non-truth-telling behaviors.  

We also divide students into two groups: Top 6 or Below Top 6, according to their 

expected/realized scores under incomplete/complete information. Unsurprisingly, 

truth-telling becomes more pronounced for Top 6 students, because they are more 

eligible for their true first choice school. Sorting behavior becomes more pronounced 

for below Top 6 students, with the only exception under BOS_I. Under BOS_I, Top 6 

students tend to choose their first choice “right”, i.e., to choose fair school (also their 

true first choice school), but choose other choices in a way inconsistent with their true 

preference order. This is understandable because BOS_I is not strategy-proof, and some 

students may apply the “skip the middle” strategy as suggested in Featherstone and 

Niederle (2014). 

We also identify some other non-truth telling behaviors, for Top 6 students and 

below top 6 students separately. For Top 6 students, the only pattern beside truth-telling 

and sorting behavior is what we called “risk averse” behavior. That is, students put their 

less preferred one between school A and B as their first choice. Only 11% and 16% 

students under BOS_I and BOS_C play it, and none play it under and SD mechanism. 

For below top 6 students, more non-truth-telling behavior patterns can be 

identified. Here “risk seeking type-I” is defined as choosing the most preferred school 

(between A and B) as their first choice. Under BOS_I, 11% students play this very risky 

strategy, while under other mechanisms, less than 7% student do that. “risk seeking 

type-II” is defined as choosing the second preferred school (between A and B) as their 

first choice. Surprisingly, students playing this strategy is less than those playing “risk 

seeking type-I”, except under BOS_C, where it is 2% higher. Another choice we 

highlight is “safe choice”, which means choosing a school which has more slots that 

the school sorting behavior should choose (i.e., sorting school). For example, when 

sorting behavior requires one to choose school C or E, he/she chooses among D, F, G. 

None plays it under SD_C, while under other mechanisms, players count on a 

proportion of 6-8%. For remained behaviors, we can categorize them into two: 

switching to schools with equal or less slots form their sorting school. Their proportions 

are roughly comparable with safe choice. These two patterns are hard to explain: they 

are either chosen randomly, or involve some high level thinking. Finally, note that there 

are no students who put their least preferred school first (not shown in Table 1). 

In summary, by examining Table 1, we are fair to say that sorting behavior 

dominates under non-strategy-proof Boston mechanisms, as well as prevails under SD 

mechanisms. 
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In the following we focus on the two prominent behaviors: truth-telling and sorting 

behavior. We ask how frequent these two patterns are, although they are both prevalent, 

under various environments. Table A1-A2 use regression method to explore various 

factors affecting the emergence of those two behaviors, both across and within 

mechanisms. Table A1 is on determinants of truth-telling. Truth-telling is more 

prevalent under SD than Boston mechanisms. Within Boston mechanisms, it is more 

prevalent under complete information than incomplete information. Under complete 

information, students have certain estimation of their rankings. Therefore, for students 

with high rankings (e.g., the Top 6), they dare use truth-telling (see also Table 1). 

Within SD mechanisms, truth-telling does not differ between two information settings, 

reflecting that truth-telling is always a dominant strategy. Note also that the behavioral 

parameter  has significantly positive effects on the choice of truth-telling, implying 

that more risk averse players (with lower ) are less likely to be truth-telling. 

Table A2 is on determinants of sorting behavior. Contrasting to truth-telling, 

sorting behavior is more prevalent under Boston mechanisms. Information has no 

influence on the emergence of sorting behavior, for either Boston or SD mechanism. 

Sorting behaviors are not influenced by any other factors we include in the regression. 

V. Welfare Consequences of Behaviors 

In this section we compare welfare consequences of truth-telling and sorting 

behaviors. Truth-telling is dominant under SD_I/C, while as we found, sorting behavior 

is dominant under BOS_I/C. It is tempting to think sorting behavior should perform 

better than truth-telling under BOS_I/C, while the opposite is true under SD_I/C. This 

may be not true. First, by Proposition 2, sorting behavior is not defeated by truth-telling 

under SD_C. Second, more generally, the performance of any behavior also depends 

on the mixture of various behaviors in the game, in equilibrium it is hard to see which 

strategy is better than others.  

Sorting behavior is considered as a behavior for the player to achieve admission by 

their first choice, as stated in Proposition 1. Table 2 shows whether this is the case in 

the lab. For all students (or all behaviors), the first choice admission rate is higher under 

BOS_I/C than under SD_I/C, with the proportion of around 80% in the former and 

around 30% in the latter (Column (1)). Truth-telling (Column (2)) do not generate high 

first choice admission under SD mechanisms, understandably. It seems surprising that 

it does generate high first choice admission under Boston mechanisms, but note that 

very few players play this strategy and almost all of them are top students (Table 1). 

On the contrary, sorting behavior generates a high first choice admission, with a 

proportion of 85%-94% under every mechanism (Column (4)). This verifies that sorting 

behavior players indeed try to achieve first choice admission. 
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Table 2: Proportions of Top Choice Match in different mechanisms (%) 

 All 

Students 
Truth-telling Sorting 

Other Non-truth-

telling 
Fair-reporting 

Treatment (1) (2) (3) (4) (5) 

BOS_I 81.48 57 92.59 62.74 93.56 

BOS_C 88.89 87.5 93.62 76.47 97.78 

SD_I 35.63 18.58 84.97 49.11 88.78 

SD_C 31.94 16 88.24 0.00 100.00 
Note: Percent of top choice match for BOS_I and SD_I is the average value after 200 simulations of 
score distribution. 

 

Figure 1 compares the fairness consequences of truth-telling and sorting behavior 

for their players. (See also Table A3 for more details). The measurement is the degree 

of mismatch (can be positive or negative). For comparison, we also calculate the 

fairness of other non-truth-telling behavior excluding sorting behavior. A larger mean 

of degree of mismatch is more desirable. Truth-telling performs no better than sorting 

behavior under any environments, and even worse under BOS_I and SD_C (p-value of 

Wilcoxon rank-sum test is p=0.0001 and p=0.0020, by Table A3). On the contrary, 

other non-truth-telling plays worse than sorting behavior under any environment, 

significantly (by Table A3).12 In addition, sorting behavior is also moderately safe, 

measures by the variance of degree of mismatch (in Table A3). 

 

                                                           

12 We also compare variance (instead of mean) of degree of mismatch for various behaviors. Less variance is 
reasonably more desirable. Under BOS_I, truth-telling has a higher variance than sorting, whole under SD_I, it has 
a lower one. Under other environments there two are equally well (under SD_I) or non-comparable (under 
BOS_C, because the sample size for truth-telling is one.). See Table A3. 



19 

 

 

Figure1: Fairness Consequences of Different Behaviors 

 

Figure 2 (and Table A4) compare the efficiency consequences of truth-telling and 

sorting behavior. The result is the same as for fairness. Sorting behavior performs 

equally well as truth-telling under BOS_C, SD_I/C, and better than truth-telling under 

BOS_I. Other non-truth-telling always performs the worst. 
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Figure 2: Efficiency Consequences of Different Behaviors 

 

As a whole, our results suggest sorting behavior is indeed a “good” strategy under 

any environment, at least compared with truth-telling and other non-truth-telling 

behaviors as a whole. This may justify why it is prevalent under all environments, as 

we’ve already shown in Section IV. 

VI. Promoting Sorting Behavior? A Social Welfare View 

In Section V we show that sorting behavior performs as well as truth-telling or even 

better under various mechanisms. Does it imply that we should, as a policy maker, 

promote sorting behavior, compared to truth-telling, or other non-truth-telling behavior, 

to improve the social welfare (either efficiency or fairness)? Not necessary. Sorting 

behavior performs well in our lab only for the specific group of students who play it. It 

may cause negative (or positive) externality on other players playing either truth-telling 

(under BOS mechanisms) or other non-truth-telling (under all mechanisms). So it is 

naïve to extrapolate its welfare advantage for individual to welfare superiority for the 

whole society. 

A useful starting point to consider the social welfare consequence of sorting 

behaviors (vs truth-telling or others) is to directly examine the welfare outcome of four 

mechanisms in our lab experiments. As we’ve seen in Section IV, sorting behavior is 
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as prevalent under BOS-I/C as truth-telling under SD_I/C. Therefore, comparing the 

welfare outcomes of those four mechanisms at least sheds some lights on how sorting 

behavior and truth-telling contribute to the social welfare. 

Welfare Outcomes of Mechanisms 

We use simulation methods to find welfare outcomes of four matching 

environments, as we explain in Section III.3 and in Appendix A. We consider three 

welfare criteria, (ex-ante) efficiency, ex-ante fairness and ex-post fairness, also 

explained in Section III.3. The results are shown in Figure 3 (and Table A5). Under all 

environments, and all measures, the outcome is consistent: SD_C is always the winner, 

followed by SD_I, while BOS_I is the loser, followed by BOS_C.  

Therefore, the results do not favor sorting behavior (vs truth-telling) to promote 

social welfare. In particular, sorting behavior does not help BOS_I to achieve (ex-ante) 

efficiency or fairness, as claimed by Lien et al. (2016, 2017), but rather, aligned with 

the claim of Pan (2017), which suspects the “social value” of sorting behavior.  

 

 

Note: Efficiency is measure by payoff per capita. Ex-ante or ex-post (un)fairness is measured by 

degree of mismatch (1) or the number of blocking pairs (2). 

Figure 3: Social Welfare Comparison Among Four Mechanisms 
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Although higher frequency of sorting behavior is associate with lower social 

welfare (under BOS_I/C, vs SD_I/C), while higher truth-telling is associate with the 

opposite (under SD_I/C, vs BOS_I/C), it is still unfair to discard sorting behavior and 

promote truth-telling under all mechanisms. First, BOS_I/C is essentially non-truth-

telling mechanisms. Unless you discard the whole mechanisms, you’d better not to 

“fool” players by suggesting them to play truth-telling. If you still try to use Boston 

mechanisms, for some theoretical arguments by Abdulkadiroglu et al. (2011) or Lien 

(2017), or some practical considerations (remember it is never possible to truth-tell 

under Chinese college admission system), you’d better consider some non-truth-telling 

behaviors. 

Second, and more important, the aforementioned correlation between behavior 

frequency and welfare outcome does not necessarily mean that promoting sorting 

behavior cannot help any given non-truth-telling mechanisms (e.g., BOS_I/C) to 

achieve higher social welfare. It even does not suggest increasing the frequency of 

sorting behavior must decrease the welfare of truth-telling mechanisms. After all, if 

sorting behavior indeed incur negative externalities to other non-truth telling behaviors 

or truth-telling behavior, those externality effects may diminish when more players play 

sorting behaviors. In our next subsection, we ask, for any given environment, what 

happen when we increase the frequency of sorting behavior or replace truth-telling or 

other non-truth-telling behaviors.  

Promoting Sorting Behavior: An Counterfactual Analysis 

Since Boston mechanism are non-strategy-proof, our counterfactual test only 

considers the switch between sorting behavior and other non-truth-telling behavior. Yet 

we also include the all-truth-telling case (i.e., all players play truth-telling) as a 

benchmark. Under SD mechanisms, we instead consider the switch between sorting 

behavior and truth-telling. Our welfare measure and simulation method are described 

in Section III.3 and Appendix A. Because sorting behavior only characterizes students’ 

first choice, we consider a simulation scenario applicable to this characterization, which 

is scenario 2’. (Other scenarios would be discussed in Section VII.) 

Figure 4 (and Table A6) shows that when we increase the proportion of sorting 

behavior, all the welfare measures, including efficiency, ex-ante and ex-post fairness 

improve significantly (with p-value for testing difference all being zero, see Table A6).  

For example, under BOS_I, when we increase the proportion of sorting behavior 

by 6 percent (roughly one tenth of its original proportion), efficiency increased by 2 

percent (= (10.249-10.046)/10.046) (Table A6). Therefore, the elasticity, i.e., the 

percentage change of efficiency divided by the percentage change of sorting behavior 

proportion (i.e., 6 percent), is roughly 0.33. Ex-ante and ex-post fairness improve more, 
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by about 5-9 percent, with the elasticity close to or higher than 1. When the proportion 

of sorting behavior increases by 12 percent, the percentage change of welfare is roughly 

doubled, with the elasticity being roughly the same. A decrease in the proportion of 

sorting behavior results in the similar magnitude of changes, with an opposite direction.  

The welfare improvement under BOS_C is even larger, especially for ex-ante and 

ex-post fairness. The sorting behavior elasticity is roughly between 1.5-2.5, larger than 

that under BOS_I. Since at the original case, BOS_C has already outperformed BOS_I, 

BOS_C will always outperform BOS_I along the changing of the proportion of sorting 

behavior. However, for ex-ante fairness, when the change is large enough so that the 

proportion of sorting behavior is close to 1, BOS_I outperforms BOS_C. 

We also consider what happens when all the players play truth-telling. Compare 

with all-sorting case, all truth-telling case has a higher efficiency, ex-ante and ex-post 

fairness under BOS_I/C, except for one ex-ante fairness measure under BOS_I. 
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Note: Efficiency is measure by payoff per capita. Ex-ante or ex-post (un)fairness is measured by 

degree of mismatch (1) or the number of blocking pairs (2). 

Figure 4: The Effect of Changing Sorting Behavior under Boston Mechanisms 

 

Figure 5 (and Table A7) shows the welfare results of replacing sorting behavior 

by truth-telling under SD mechanisms. Increasing or decreasing sorting behavior 

around the origin case has almost no effects on all welfare measures. For those 

significant changes, the direction can be not monotonic. Even if we jump to the all 

sorting behavior case, for most measures, the effect for fairness is still insignificant, 
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although the effect for efficiency is positive. By the fairness measure of the number of 

blocking pairs, all sorting behavior performs even the worst among all the listed 

behavior mixtures. 13However, all truth-telling generates the highest welfare level. As 

a whole, sorting behavior does not show up under SD mechanisms. 

 

Note: Efficiency is measure by payoff per capita. Ex-ante or ex-post (un)fairness is measured by 

degree of mismatch (1) or the number of blocking pairs (2). 

                                                           

13 The inconsistency of two fairness measures, i.e., number of blocking pairs and degree of mismatch, sometimes 
very sharp, may due to the methodology issue we briefly discuss in Section III.3. 
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Figure 5: The Effect of Changing Sorting Behavior under SD Mechanisms 

 

As a whole, sorting behavior helps to approach desirable matching outcomes under 

Boston mechanism, but not under SD mechanisms. Under Boston mechanisms, it helps 

both at the margin and at the extreme. Under SD mechanisms, it does not help at the 

margin, and only has limited influence at the extreme where all players play sorting 

behavior. Although all truth-telling strategy profile seems the best under any 

environment, under Boston mechanism it is not an equilibrium. Therefore, promoting 

sorting behavior is still a good alternative under such mechanisms. 

VII. Alternative Measure of Sorting Behaviors 

In previous sections we focus on one measure of sorting behavior, i.e., choosing 

the most preferred one within the set of possibly achievable schools. In this section we 

focus on the other measure, fair-reporting, i.e., students choose a school as their first 

choice which turns out to be their fair school.  

Furthermore, we can extent the definition of fair-reporting to include all non-truth-

telling behaviors. We define misreport as a behavior where a student’s first choice turns 

out not to be his/her fair school. The degree of misreport measures the difference 

between the preference ranking of the first choice and the fair school. For example, if a 

student’s fair school is a school ranked No 6 in his/her preference list, while his/her 

first choice is a school ranked No 5, then the degree of mismatch is 5-6=-1. If the degree 

of mismatch is negative, then the student is said to down-report, otherwise he/she up-

reports. Therefore, all non-truth-telling behaviors are divided into three types: up-report, 

down-report, and fair-report.14 

Figure 6 shows the proportion of various misreport behaviors, as well as truth-

telling behavior. Under BOS_C/I, fair-reporting behavior dominates other behavior 

patterns, with a proportion of over 60 percent. Under SD_C/I, although truth-telling is 

dominant, fair-reporting is still prevalent and counts on near 20 percent among all 

players. There are also significant proportion of up-reporting and down-reporting, with 

a proportion of 10-20 percent in general. 

Table A8 further explores the determinants of fair-reporting, parallel to Table A2 

on determinants of sorting behavior. The result is also similar as Table A2. Boston 

mechanisms generate more fair-reporting than SD mechanisms. Within Boston or SD 

                                                           

14 It is not surprising that fair-reporting and sorting behavior (defined in Section 3.2) are highly overlapping. In 
fact, among all the non-truth-telling behavior, 49.35% is both, 19.9% is either, while other 30.7% is neither. 
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mechanism, information makes no difference. There are no other factors included in 

the table showing significance.  

Table A9 explores the determinants of various misreport behaviors further. It 

shows how the degree of misreport changes across mechanisms and other school or 

student characteristics. To focus on non-truth-telling behavior, truth-telling behavior is 

excluded from the sample. Misreport behavior does not differ across four mechanisms. 

Among school characteristics, if a student has a larger size of fair school slots, he or 

she is encouraged to choose a first choice school ranked higher. Among student 

characteristics, a student with a higher expected/realized score ranking tends to up-

report more. No other student characteristics has significant influence, except that 

student from Economics and Management school up-report more. Behavioral 

parameters keep quiet in all regressions.  

 

 

Figure 6: Proportions of Misreporting and Truth-telling 

 

Column (5) in Table 2 shows that fair-reporting results a very high first choice 

admission under all mechanisms. Under SD_C it is 100 percent, while under other 

mechanisms it is close to or beyond 90 percent. Figure 7 compares fairness 

consequences of misreporting (including fair-reporting) under four mechanisms, 

through the measure of degree of mismatch. Table A10 use a regression method to 
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address the same issue. Fair-reporting almost always generates fair matching. Up-report 

results in a positive degree of mismatch, or an up-match, while down-reporting results 

in a negative degree of mismatch, or down-match. Truth-telling also generates fair 

matching under BOS_C and SD_I/C, but down-match under BOS_I. 

Although up-match generate higher matching outcome on average, the benefit has 

its costs: the variance of degree of mismatch is also higher under up-report than under 

fair-report and other behaviors (Table A5). Therefore, although fair-report results in 

lower matching than up-report, it is safer.  

 

 

Figure 7: Degree of Mismatch under Misreporting 

 

    We can also simulate welfare outcomes of various mechanism by characterizing 

students’ misreporting behavior. The measure of misreporting has an advantage over 

sorting behavior: it can not only characterize first choice, but any further choice. We 

can ask how far away a student’s second choice is from his/her fair school, and so on. 

In scenario 1 of our simulations, we simply copy every student’s behavior observed in 

the lab experiment data, only by his/her expected or realized ranking, as in Chen and 

Sonmez (2007). In scenario 2-4, we only draw information on distributions of students’ 

misreporting behaviors by considering their first choice and second choices, and allow 

for a larger space for randomization. More details are given in Appendix A. 
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All the simulations deliver matching outcomes similar with what we have when 

we use sorting behavior as the “experimental” behavior (as in Table 1). SD_I/C always 

perform better than BOS_I/C under any welfare measure, either efficiency or ex-

ante/ex-post fairness. The complete information case usually has a higher welfare also, 

with the only exception that BOS_I performs better than BOS_C under the ex-ante 

fairness measure. The results are shown in Figure A1-A5. 

   Our simulation results also support our simulation method by focusing on first 

choice. Although in different scenarios we always characterize the first choice, we 

randomize other choices in various degrees, with the full characterization of all choices 

in scenario 1. Although the absolute level of welfare differs across different scenarios, 

the relative rankings of welfare performance are almost unchanged. 

VIII. Conclusions 

Strategy-proof mechanisms are thought as good mechanisms because they induce 

good behaviors such as truth-telling. School choice and college admission literature, 

among others, often focus on strategy-proof mechanisms (such as SD or TTC 

mechanisms) and truth-telling behaviors, with non-strategy-proof mechanisms (such as 

Boston mechanism) as the control group, and non-truth-telling behavior as nuisances. 

However, non-strategy-proof mechanisms are frequently used in reality. Meanwhile, 

non-truth-telling behaviors emerge in both strategy-proof and non-strategy-proof 

mechanisms. Therefore, studying non-truth-telling behaviors have at least double 

significances. First, if we have to use non-strategy-proof mechanisms, what kind of 

non-truth-telling behavior is good for players and for the society? Second, under 

strategy-proof mechanisms, how often does some non-truth-telling behavior emerge 

and how they affect the matching outcomes? 

In this paper we put non-truth-telling behavior as our “leading role”. In particular, 

we highlight one non-truth-telling behavior: the sorting behavior, where plays list their 

most preferred achievable matching objective as they can perceive as their first choice, 

regardless of their further choices. Sorting behavior contrasts to truth-telling: it targets 

directly the matching objective a player think as the best under his/her ability or other 

external constraints (i.e., vacancies), instead of listing all his/her unconstrained 

matching objectives by his/her preference order. 

In our lab experimental including both truth-telling mechanisms (i.e., SD 

mechanisms) and non-truth-telling mechanisms (i.e., Boston mechanisms), as well as 

with different information, we show that: First, sorting behavior prevalent under all 

mechanisms, and more so under non-strategy-proof mechanisms. Second, at individual 

level, sorting behavior performs as well as truth-telling behavior, under all mechanisms. 
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Third, at the society level, more sorting behavior under Boston mechanism benefit the 

society, while under SD mechanism, its influence is negligible.  

The results explain why non-strategy-proof mechanisms are frequently used and 

why people frequently play non-truth-telling behavior in the reality. In particular, if a 

mechanism designer keeps in his mind that he can promote sorting behavior in the 

would-be designed non-strategy-proof mechanism, he might be confident that he can 

achieve a social welfare level as high as under a truth-telling mechanism. In fact, 

Chinese college admission system has been working under a non-truth-telling 

mechanism (i.e., Boston mechanism) for many years. High school teachers, parents, 

consulting firms, and even colleges have try their best to provide information or 

guidance to students, to help them figure out their “sorting” colleges. In dating service 

companies, client information is collected and analyzed so that each client is provided 

with a very limited list of dating candidates. The service is essentially one to help 

players to form a good sorting strategy. Another example would be that a PhD student 

may get advice or recommendation from his/her advisor to figure out his/her sorting 

employee(s) as he/she applies for a position in the job market. 

We have already show that promoting behaviors can help individual or the society 

to achieve higher welfare. One remained question is how to do that. Information 

provision plays an important role, as we discussed above. Sorting behavior can also be 

induced by careful mechanism design. For example, constrained school choice 

mechanisms may help to promote sorting behavior, as implied in Haeringer and Klijn 

(2009) and Lien, et al., (2017). In general, it deserves more research to either examine 

the welfare consequence of sorting behavior or to design mechanisms to influence 

agents’ choice of it. 

  



31 

 

References 
Abdulkadiroğlu, A., Che, Y. K., Yasuda, Y., 2011. Resolving conflicting preferences in school 
choice: The “Boston mechanism” reconsidered. Amer. Econ. Rev. 101(1), 399-410. 

Abdulkadiroğlu, A., Sönmez, T., 2003. School choice: A mechanism design approach. Amer. 
Econ. Rev. 93(3), 729-747. 

Ashlagi, I., Gonczarowski, Y. A., 2017. Stable matching mechanisms are not obviously strategy-
proof. Manuscript. 

Calsamiglia, C., Haeringer G., and Klijn F., 2010. Constrained school choice: An experimental 
study. Amer. Econ. Rev. 100(1), 1860-1874. 

Chen, Y., Jiang, M., Kesten, O., 2015. Chinese College Admissions reforms: experimental and 
empirical evaluations. Manuscript 

Chen, Y., Kesten, O., 2017. Chinese college admissions and school choice reforms: A theoretical 
analysis. J. Polit. Economy. 125(1), 99-139. 

Chen, Y., Sönmez, T., 2006. School choice: an experimental study. J. Econ. Theory. 127(1), 202-
231. 

Edril, A., Ergin, H., 2008. What's the matter with tie-breaking? Improving efficiency in school 
choice. Amer. Econ. Rev. 98(3), 669-689. 

Ergin, H., Sönmez, T., 2006. Games of school choice under the Boston mechanism. J. Public 
Econ. 90(1), 215-237. 

Featherstone, C., Niederle, M., 2014. Improving on strategy-proof school choice mechanisms: An 
experimental investigation. Unpublished paper, Stanford University. 

Haeringer, G., Klijn, F., 2009. Constrained school choice. J. Econ. Theory. 144(5), 1921-1947. 

Klijn, F., Pais, J., Vorsatz, M., 2013. Preference intensities and risk aversion in school choice: A 
laboratory experiment. Exper. Econ. 16(1), 1-22. 

Li, S., 2017. Obviously strategy-proof mechanisms, Amer. Econ. Rev. 107(11): 3257-3287. 

Lien, J. W., Zheng, J., Zhong, X., 2016. Preference submission timing in school choice matching: 
testing fairness and efficiency in the laboratory. Exper. Econ. 19(1), 116-150. 

Lien, J. W., Zheng, J., Zhong, X., 2017. Ex-ante fairness in the Boston and Serial Dictatorship 
mechanisms under pre-exam and post-exam preference submission. Games Econ. Behav. 101, 98-
120. 

Pais, J., Pintér, Á., 2008. School choice and information: An experimental study on matching 
mechanisms. Games Econ. Behav. 64(1), 303-328. 

Pan, S., 2016. The instability of matching with overconfident agents: laboratory and field 
investigations. Manuscript. 

Roth, A.E., Sotomayor, M.A.O., Two Sided Matching: A Study in Game-Theoretic Modelling and 
Analysis, New York: Cambridge University Press, 1990. 

Tanaka, T., Camerer, C. F., Nguyen, Q., 2010. Risk and time preferences: linking experimental 
and household survey data from Vietnam. Amer. Econ. Rev. 100(1), 557-571. 

Troyan, P., 2016. Obviously Strategy-Proof Implementation of Top Trading Cycles. Manuscript. 

Wu, B., Zhong, X., 2014. Matching mechanisms and matching quality: Evidence from a top 
university in China. Games Econ. Behav. 84, 196-215. 

Wu, B., Zhong, X., 2017. Fairness of the Boston mechanism in China’s centralized college 
admissions. Working paper.  



32 

 

Appendix A: Simulation Methods for 

Evaluating Matching Outcomes 
We first describe our simulation process in general, and then we will describe five 

scenarios we use to simulate preference submission behaviors.  

The simulation steps are as follows. 

Step1. Randomly draw all the students’ realized score rankings from the given 

score distribution. 

Step2. Simulate students’ preference submission based on each ex-ante/realized 

score distribution under the incomplete/complete-information mechanism, through 

each of the four scenarios we will describe below. 

Step3. Match according to the realized scores and simulated preference submission 

behavior of all students under the Boston or SD mechanism. 

Step4. Simulate step 1-3 200 times. 

We now describe the four scenarios we propose to draw from the observed actions 

of students and capture behavioral patterns. 

Scenario 1 

For the incomplete information treatments, the matching is done according to each 

realized score ranking, each time under the same observed preference submission 

behavior of each student. 

For the complete information treatments, we assume a student's behavior is only 

determined by his realized ranking, and randomly choose from one of the two sessions 

for each treatment the preference submission behavior (for all seven choices) for each 

score ranking.  

Scenario 2 

We use the distribution of truth-telling and up/down/fair reporting strategies for 

the first choice for simulating student choices. In particular, for each treatment, we 

calculate the proportion of truth-telling and the distribution of non-truth-telling 

reporting strategies by looking at the degree of misreport (w.r.t. ex-ante/realized scores 

for incomplete/complete-information treatments). We then assign students to be truth-

telling according to the proportion of truth-telling for each treatment. For non-truth-

telling students, we assign students to up/fair/down-reporting the first choice according 

to the distributions of non-truth-telling reporting strategies found in the data. We 

randomly assign the 2nd-7th choices for each non-truth-telling student. 
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Scenario 2’ 

We use the distribution of truth-telling, sorting behavior and other behavior 

patterns revealed in Table 1. In particular, for each treatment, we calculate the 

proportion of truth-telling, and the distribution of sorting and other non-truth-telling 

strategies by looking at students’ first choice. We distinguish top 6 students and below 

top 6 students. We then assign students to be a specific behavior pattern according to 

the proportion of that pattern of behavior for each treatment found in the data (i.e., Table 

1). We randomly assign the 2nd-7th choices for each non-truth-telling student. 

Scenario 3 

Scenario 3 further simulates the non-truth-telling students’ second choice after 

simulating the first choice as in Scenario 2. We assign second choices to the students 

in each treatment to match the distribution of the degree of misreporting, that is, the gap 

between the preference ranking of the second choice and the calculated ex-ante/ex-post 

fair school according to the ex-ante/ex-post realized scores. If a student’s simulated 

second choice is the same with the simulated first choice, then we re-generate the 

second choice randomly according to the distribution until they are different. The 3rd-

7th choices for each student are randomly assigned. 

Scenario 4 

Scenario 4 simulates the non-truth-telling students’ second choice by considering 

its relation with the first choice after simulating the first choice as in Scenario 2. In 

particular, the second choices are assigned to match the distribution of the gap between 

the preference ranking of the first and second choice in the data. The 3rd-7th choices 

for each student are randomly assigned. 
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Table and Figure Appendix 
Table A1: Determinants of Truth-telling: Logit Model 

Independent Variable  
Dependent Variable: Truth-telling  

(1) (2) (3) 

Boston  -0.5833*** -0.5823*** -0.5949*** 

(BOS_C-SD_C) (0.0646)  (0.0646)  (0.0626)  

Incomplete  -0.0463  -0.03539  -0.0475  

(SD_I-SD_C) (0.0696)  (0.0730)  (0.0720)  

Boston*Incomplete  -0.05556  -0.0629  -0.0471  

(BOS_I-BOS_C)-(SD_I-SD_C) (0.0792)  (0.0805)  (0.0793)  

Rank  -0.00344  -0.00336  -0.00263   
(0.00237)  (0.00239)  (0.00240)  

Fair School Slots  -0.0181  -0.0191  -0.0241   
(0.0156)  (0.0158)  (0.0162)  

Female  
 

-0.000912  0.00214    
(0.0405)  (0.0405)  

Age  
 

-0.00154  0.000496    
(0.0147)  (0.0145)  

Econ  
 

0.0153  0.0245    
(0.0550)  (0.0548)  

Engineer  
 

0.0350  0.0506    
(0.0572)  (0.0574)  

Science  
 

-0.00267  -0.00205    
(0.0734)  (0.0735)  

σ 
  

0.208***     
(0.0763)  

α 
  

-0.0926     
(0.0810)  

λ 
  

0.00997     
(0.0124)  

Observations  360  360  360  

Pseudo R-squared  0.4022  0.4034  0.4186  

BOS_I-BOS_C -0.1019*** -0.0982*** -0.0946***  
(0.0377)  (0.0374)  (0.0362)  

SD_I-BOS_C 0.5370*** 0.5469***  0.5475***   
(0.0579)  (0.0594)  (0.0583)  

Note: *** p<0.01, ** p<0.05, * p<0.1. Coefficients report average marginal effects. λ 

takes the average value of its lower and upper bound. We also run regressions with the 

lower bound and upper bound of λ, and the results are similar.  
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Table A2: Determinants of Sorting: Logit Model 

Independent Variable  
Dependent Variable: Sorting 

(1) (2) (3) 

Boston  0.417*** 0.421*** 0.430*** 

(BOS_C-SD_C) (0.0751) (0.0748) (0.0741) 

Incomplete  -0.0602 -0.0557 -0.0496 

(SD_I-SD_C) (0.0620) (0.0622) (0.0623) 

Boston*Incomplete  0.0370 0.0266 0.0116 

(BOS_I-BOS_C)-(SD_I-SD_C) (0.0956) (0.0957) (0.0957) 

Rank  -0.00225 -0.00209 -0.00205  
(0.00299) (0.00302) (0.00302) 

Fair School Slots  0.0133 0.0134 0.0111  
(0.0194) (0.0194) (0.0197) 

Female  
 

0.00702 0.0105   
(0.0510) (0.0515) 

Age  
 

-0.0122 -0.0126   
(0.0171) (0.0171) 

Econ  
 

-0.0213 -0.00773   
(0.0925) (0.0941) 

Engineer  
 

-0.0391 -0.0402   
(0.0951) (0.0963) 

Science  
 

-0.106 -0.108   
(0.113) (0.115) 

σ 
  

-0.111    
(0.101) 

α 
  

0.154    
(0.104) 

λ 
  

-0.00967    
(0.0155) 

Observations  360 360 360 

Pseudo R-squared  0.155 0.159 0.164 

BOS_I-BOS_C -0.0231 -0.0291 -0.0380  
(0.0728) (0.0731) (0.0728) 

SD_I-BOS_C 0.477*** 0.477*** 0.480***  
(0.0670) (0.0674) (0.0670) 

    

Note: *** p<0.01, ** p<0.05, * p<0.1. Coefficients report average marginal effects. λ takes the average 

value of its lower and upper bound. We also run regressions with the lower bound and upper bound of 

λ, and the results are similar. 
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Table A3: Fairness Consequences of Different Behaviors 

 Panel A: Summary statistics of degree of mismatch 

Mechanism Report Strategy # of Obs. Mean SD Min Max 

BOS_I 

Truth-telling 1 -0.86 . -0.86 -0.86 

Sorting 68 -0.00044 0.5 -0.93 2 

Other non-truth-telling 39 -0.69 1 -3 2 

BOS_C 

Truth-telling 8 0.13 0.83 -1 2 

Sorting 47 0.085 0.46 -1 2 

Other non-truth-telling 17 -1.1 1 -3 1 

SD_I 

Truth-telling 70 -0.011 0.58 -0.95 1.6 

Sorting 19 -0.024 0.56 -0.84 1.9 

Other non-truth-telling 19 -0.61 0.83 -2 0.74 

SD_C 

Truth-telling 50 0.02 0.14 0 1 

Sorting 17 0.12 0.49 0 2 

Other non-truth-telling 5 -1 1 -2 0  
Panel B: Wilcoxon Rank-Sum Test of differences in degree of mismatch 

BOS_I Sorting >Other≈ Truth-telling  
(p=0.0001) (p=0.8960) 

BOS_C Truth-telling ≈ Sorting> Other  
    (p=0.7743)  (p=0.0000) 

SD_I Truth-telling ≈ Sorting> Other  
         (p=0.9680) (p=0.0411) 

SD_C Sorting >Other>Truth-telling 
  (p=0.0020) (p=0.0000)  

Panel C: F test of variance of degree of mismatch 

BOS_I Other> Sorting  
(p=0.0000) 

BOS_C Other ≈ Truth-telling > Sorting  
(p=0.5923)   (p=0.0061) 

SD_I Other >Truth-telling ≈ Sorting  
(p=0.0157)  (p=0. 9485) 

SD_C Other ≈ Sorting >Truth-telling 
 (p=0.156)  (p=0.0000) 

Note: Degree of mismatch for BOS_I and SD_I is the average value after 200 simulations of score 

distribution.  
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Table A4: Efficiency Consequences of Different Behaviors 

 Panel A: Summary statistics of relative payoff 

Mechanism Report Strategy 
# of 

Obs. 
Mean SD Min Max 

BOS_I 

Truth-telling 1 0.866 . 0.866 0.866 

Sorting 68 1.011 0.119 0.855 1.571 

Other non-truth-telling 39 0.882 0.199 0.455 1.455 

BOS_C 

Truth-telling 8 1.038 0.177 0.846 1.455 

Sorting 47 1.025 0.124 0.818 1.571 

Other non-truth-telling 17 0.809 0.182 0.556 1.182 

SD_I 

Truth-telling 70 1.013 0.124 0.826 1.451 

Sorting 19 1.01 0.141 0.869 1.554 

Other non-truth-telling 19 0.89 0.156 0.628 1.168 

SD_C 

Truth-telling 50 1.004 0.031 1 1.222 

Sorting 17 1.034 0.139 1 1.571 

Other non-truth-telling 5 0.818 0.182 0.636 1  
Panel B: Wilcoxon Rank-Sum Test of differences in relative payoff 

BOS_I Sorting >Other ≈Truth-telling  
(p=0.0001)   (p=0.8960) 

BOS_C Truth-telling≈ Sorting>Other  
       (p=0.7575)  (p=0.0000) 

SD_I Truth-telling ≈ Sorting>Other  
     (p=0.7903)  (p=0.0383) 

SD_C Sorting ≈Truth-telling>Other 
 (p=0.4061)   (p=0.0000)  

Panel C: F test of variance of relative payoff 

BOS_I Other >Sorting  
(p=0.0001) 

BOS_C Other ≈ Truth-telling > Sorting  
(p=0.9990)   (p=0.0701) 

SD_I Other ≈ Sorting ≈ Truth-telling  
(p=0.6743) (p=0.4444) 

SD_C Other ≈ Sorting >Truth-telling 
 (p=0.3891) (p=0.0000) 

Note: Relative payoff for BOS_I and SD_I is the average value after 200 simulations of score 

distribution. 
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Table A5: Social Welfare Comparison Among Four Mechanisms 

 Panel A: Mean of Welfare Measures 

Welfare Measures BOS_I BOS_C SD_I SD_C 

Efficiency (by payoff per capita) 10.046 10.551 10.664 11.105 

Ex-post fairness (by degree of mismatch) 1.032 0.642 0.551 0.266 

Ex-post fairness (by number of blocking 

pairs) 
0.948 0.651 0.349 0.145 

Ex-ante fairness (by degree of mismatch) 0.963 0.876 0.749 0.598 

Ex-ante fairness (by number of blocking 

pairs) 
0.973 0.849 0.589 0.416 

 Panel B: Wilcoxon Rank-Sum Test Result 

Efficiency (by payoff per capita) BOS_I < BOS_C < SD_I < SD_C 
 (p=0.0000)(p=0.0000)(p=0.0000) 

Ex-post fairness (by degree of mismatch) BOS_I > BOS_C > SD_I > SD_C 
 (p=0.0000)(p=0.0000)(p=0.0000) 

Ex-post fairness (by number of blocking 

pairs) 
BOS_I > BOS_C > SD_I > SD_C 

 (p=0.0000)(p=0.0000)(p=0.0000) 

Ex-ante fairness (by degree of mismatch) BOS_I > BOS_C > SD_I > SD_C 
 (p=0.0000)(p=0.0000)(p=0.0000) 

Ex-ante fairness (by number of blocking 

pairs) 
BOS_I > BOS_C > SD_I > SD_C 

 (p=0.0000)(p=0.0000)(p=0.0000) 
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Table A6: The Effects of Changing Sorting Behavior under Boston Mechanisms 

 Origin 6% -6% 12% -12% 
100% 

sorting 

100% 

truth-telling 
 （1） （2） （3） （4） （5） （6） （7） 

BOS_I        

Payoff 10.046 10.249 9.897 10.429 9.74 11.431 11.611 

Ex-post (un)fairness-1 1.032 0.949 1.09 0.869 1.165 0.435 0.157 

Ex-post (un)fairness-2 0.948 0.894 1.001 0.84 1.066 0.638 0.071 

Ex-ante (un)fairness-1 0.963 0.873 1.036 0.791 1.114 0.293 0.424 

Ex-ante (un)fairness-2 0.973 0.898 1.022 0.825 1.103 0.541 0.262 

Efficiency All truth > all sorting > 12% > 6% > Origin > -6% > -12% 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Ex-post (un)fairness-1 -12% > -6% > Origin > 6% > 12% > all sorting > all truth 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Ex-post (un)fairness-2 -12% > -6% > Origin > 6% > 12% > all sorting > all truth 
 (0.0001) (0.0008) (0.0004) (0.0022) (0.000) (0.000) 

Ex-ante (un)fairness-1 -12% > -6% > Origin > 6% > 12% > all truth > all sorting  
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Ex-ante (un)fairness-2 -12% > -6% > Origin > 6% > 12% > all sorting > all truth  
 (0.000) (0.0033) (0.0001) (0.0001) (0.000) (0.000) 

BOS_C        

Efficiency 10.551 10.713 10.336 10.893 10.11 11.509 11.61 

Ex-post (un)fairness-1 0.642 0.557 0.744 0.478 0.849 0.169 0.16 

Ex-post (un)fairness-2 0.651 0.587 0.753 0.519 0.86 0.42 0.073 

Ex-ante (un)fairness-1 0.876 0.797 0.969 0.722 1.065 0.468 0.417 

Ex-ante (un)fairness-2 0.849 0.782 0.944 0.709 1.047 0.568 0.253 

Efficiency All truth > all sorting > 12% > 6% > Origin > -6% > -12% 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Ex-post (un)fairness-1 -12% > -6% > Origin > 6% > 12% > all sorting ≈ all truth 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.3045) 

Ex-post (un)fairness-2 -12% > -6% > Origin > 6% > 12% > all sorting > all truth 
 (0.000) (0.000) (0.0015) (0.001) (0.000) (0.000) 

Ex-ante (un)fairness-1 -12% > -6% > Origin > 6% > 12% > all sorting > all truth  
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Ex-ante (un)fairness-2 -12% > -6% > Origin > 6% > 12% > all sorting > all truth  
 (0.000) (0.000) (0.0007) (0.0008) (0.000) (0.000) 

Note: Efficiency is measure by payoff per capita. Ex-ante or ex-post (un)fairness is measured by 

degree of mismatch (1) or the number of blocking pairs (2). Wilcoxon Rank-Sum Test is used to 

rank matching outcome under different behavior mixtures for each welfare measure. 

  



40 

 

Table A7: The Effects of Changing Sorting Behavior under SD Mechanisms 

 Origin 6% -6% 12% -12% 
100% 

sorting 

100% 

Truth-telling 
 （1） （2） （3） （4） （5） （6） （7） 

SD_I        

Efficiency 10.664 10.636 10.691 10.643 10.657 11.171 11.528 

Ex-post (un)fairness-1 0.551 0.583 0.541 0.585 0.53 0.511 0 

Ex-post (un)fairness-2 0.349 0.364 0.336 0.374 0.333 0.742 0 

Ex-ante (un)fairness-1 0.749 0.742 0.735 0.733 0.765 0.409 0.407 

Ex-ante (un)fairness-2 0.589 0.586 0.576 0.597 0.594 0.667 0.258 

Efficiency All truth > all sorting > -6% ≈ Origin ≈ -12% ≈ +12% ≈ +6%  
    (0.000) (0.000)   (0.323) (0.611) (0.604) (0.867) 

Ex-post (un)fairness-1 12% ≈ 6% > Origin ≈ -6% ≈ -12% ≈ all sorting > all truth 
 (0.832) (0.017) (0.254) (0.522) (0.1225)   (0.000) 

Ex-post (un)fairness-2 all sorting > 12% ≈ 6% > Origin ≈ -6% ≈ -12% > all truth 
   (0.000) (0.339) (0.090) (0.104) (0.939)(0.000) 

Ex-ante (un)fairness-1 -12% ≈ Origin ≈ 6% ≈ -6% ≈ 12% > all sorting ≈ all truth  
 (0.167) (0.659) (0.456) (0.755) (0.000)(0.306) 

Ex-ante (un)fairness-2 all sorting > 12% ≈ -12% ≈ Origin ≈ 6% ≈ -6% > all truth  
 (0.000) (0.617) (0.826) (0.586) (0.490)(0.000) 

SD_C        

Efficiency 11.105 11.115 11.096 11.091 11.153 11.318 11.532 

Ex-post (un)fairness-1 0.266 0.261 0.269 0.27 0.239 0.231 0 

Ex-post (un)fairness-2 0.145 0.144 0.148 0.152 0.129 0.51 0 

Ex-ante (un)fairness-1 0.598 0.581 0.596 0.603 0.577 0.557 0.398 

Ex-ante (un)fairness-2 0.416 0.411 0.429 0.428 0.392 0.662 0.254 

Efficiency All truth > all sorting > -12% ≈ 6% ≈ Origin ≈ -6% ≈ 12%  
    (0.000)     (0.000) (0.206) (0.503) (0.688) (0.928) 

Ex-post (un)fairness-1 12% ≈ -6% ≈ Origin ≈ 6% ≈ -12% ≈ all sorting > all truth 
 (0.887) (0.648) (0.718) (0.111) (0.294)   (0.000) 

Ex-post (un)fairness-2 all sorting > 12% ≈ -6% ≈ Origin ≈ 6% > -12% > all truth 
   (0.000) (0.606) (0.508) (0.911) (0.078)(0.000) 

Ex-ante (un)fairness-1 12% ≈ Origin ≈ -6% ≈ 6% ≈ -12% ≈ all sorting > all truth  
 (0.899) (0.733) (0.164) (0.879) (0.121)     (0.000) 

Ex-ante (un)fairness-2 all sorting > -6% ≈ 12% ≈ Origin ≈ 6% ≈ -12% > all truth  
 (0.000) (0.859) (0.286) (0.634) (0.151)(0.000) 

Note: Efficiency is measure by payoff per capita. Ex-ante or ex-post (un)fairness is measured by 

degree of mismatch (1) or the number of blocking pairs (2). Wilcoxon Rank-Sum Test is used to 

rank matching outcome under different behavior mixtures for each welfare measure. 
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Table A8: Determinants of Fair-Reporting: Logit Model 

Independent Variable  
Dependent Variable: Fair-Reporting 

(1)  (2)  (3)  

Boston   0.431*** 0.439*** 0.445*** 

(BOS_C-SD_C)  (0.0735) (0.0730) (0.0727) 

Incomplete   -0.0278 -0.0280 -0.0258 

(SD_I-SD_C)  (0.0587) (0.0587) (0.0589) 

Boston*Incomplete   0.00463 -0.00726 -0.0174 

(BOS_I-BOS_C)-(SD_I-SD_C)  (0.0942) (0.0939) (0.0941) 

Rank   -0.00311 -0.00288 -0.00282  
 (0.00296) (0.00299) (0.00300) 

Fair School Slots   -0.000301 -0.00129 -0.00381  
 (0.0192) (0.0193) (0.0195) 

Female   
 

0.0145 0.0190  
 

 
(0.0506) (0.0510) 

Age   
 

0.00137 0.00154  
 

 
(0.0169) (0.0169) 

Econ   
 

-0.0731 -0.0626  
 

 
(0.0903) (0.0916) 

Engineer   
 

-0.108 -0.112  
 

 
(0.0928) (0.0939) 

Science   
 

-0.0992 -0.106  
 

 
(0.111) (0.112) 

σ  
  

-0.0631  
 

  
(0.0999) 

α  
  

0.134  
 

  
(0.104) 

λ  
  

-0.00981  
 

  
(0.0155) 

Observations  360 360 360 

Pseudo R-squared   0.158 0.162 0.166 

BOS_I-BOS_C  -0.0231 -0.0353 -0.0432  
 (0.0737) (0.0737) (0.0736) 

SD_I-BOS_C  0.458*** 0.467*** 0.471***  
 (0.0672) (0.0669) (0.0667) 

Note: *** p<0.01, ** p<0.05, * p<0.1. Coefficients report average marginal effects. 

λ takes the average value of its lower and upper bound. We also run regressions with 

the lower bound and upper bound of λ, and the results are similar. 
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Table A9: Determinants of Misreport within Non-Truth-Telling 

Independent Variable 

Dependent Variable: Degree of Misreport 

OLS  Ordered Probit 

(1) (2) (3)  (4) (5) (6) 

Boston -0.0720 -0.0706 -0.153  -0.131 -0.130 -0.220 

(BOS_C-SD_C) (0.250) (0.248) (0.250)  (0.274) (0.274) (0.278) 

Incomplete 0.116 0.128 0.0985  0.0354 0.0553 0.0114 

(SD_I-SD_C) (0.271) (0.269) (0.279)  (0.293) (0.294) (0.307) 

Boston*Incomplete 0.0126 0.0115 0.101  0.0941 0.0864 0.176 

(BOS_I-BOS_C)-(SD_I-SD_C) (0.315) (0.312) (0.317)  (0.341) (0.342) (0.349) 

Rank  -0.0171** -0.0272*** -0.0264***  -0.0202*** -0.0331*** -0.0329***
 

(0.00678) (0.00838) (0.00855)  (0.00754) (0.00943) (0.00968) 

Fair School Slots 
 

0.112** 0.104*  
 

0.140** 0.134** 
 

(0.0550) (0.0556)  
 

(0.0608) (0.0620) 

Female 
  

-0.0949  
  

-0.0808 
   

(0.144)  
  

(0.158) 

Age 
  

0.00718  
  

0.00723 
   

(0.0480)  
  

(0.0530) 

Econ 
  

0.425**  
  

0.427** 
   

(0.189)  
  

(0.210) 

Engineer 
  

0.326  
  

0.330 
   

(0.198)  
  

(0.219) 

Science 
  

0.0645  
  

-0.0626 
   

(0.291)  
  

(0.318) 

σ 
  

0.0227  
  

0.103 
   

(0.300)  
  

(0.330) 

α 
  

0.0209  
  

-0.0181 
   

(0.321)  
  

(0.353) 

λ 
  

-0.0663  
  

-0.0737 
   

(0.0468)  
  

(0.0514) 

Observations 231 231 231  231 231 231 

(Pseudo)R-squared 0.032 0.050 0.091  0.0141 0.0233 0.0394 

BOS_I-BOS_C 0.1282 0.1394 0.1997  0.1295 0.1417 0.1870 
 

(0.1600) (0.1590) (0.1670)  (0.1743) (0.1748) (0.1852) 

BOS_C-SD_I -0.1875 -0.1985 -0.2513  -0.1665 -0.1854 -0.2317 
 

(0.2070) (0.2056) (0.2178)  (0.2231) (0.2238) (0.2395) 

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. λ is the average value of its 

lower and upper bound. We also run regression with the lower bound and upper bound of λ, and the 

results are similar. 
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Table A10: OLS Regression of the Degree of Mismatch on Misreport 

Independent 

Variable 

Dependent Variable 

Degree of Mismatch  Variance of Degree of Mismatch 

BOS_I BOS_C SD_I SD_C  BOS_I BOS_C SD_I SD_C 

(1) (2) (3) (4)  (5) (6) (7) (8) 

          

Truth-telling -0.416 0.146 0.246* 0.0133  0.423 0.585** 0.211 0.0127 

 (0.671) (0.265) (0.139) (0.0841)  (0.703) (0.240) (0.139) (0.0557) 

Up-report 0.278* 0.341 0.397** 0.390**  0.894*** 0.806*** 0.421** 0.379*** 

 (0.152) (0.242) (0.196) (0.157)  (0.159) (0.219) (0.196) (0.104) 

Down-report -1.351*** -1.446*** -1.105*** -1.798***  0.118 0.0812 -0.0652 0.112 

 (0.179) (0.206) (0.217) (0.194)  (0.188) (0.187) (0.217) (0.129) 

Rank 0.00111 0.0228** -0.0191*** 0.00915**  0.0230*** 0.00731 0.0260*** 0.00651** 

 (0.00824) (0.00944) (0.00680) (0.00424)  (0.00864) (0.00856) (0.00681) (0.00281) 

Fair School 

Slots 

0.0899* -0.0964 0.194*** -0.0343  -0.109** 0.0683 -0.109** -0.0228 

(0.0515) (0.0634) (0.0420) (0.0288)  (0.0540) (0.0574) (0.0420) (0.0191) 

Female -0.300** 0.283* -0.143 0.0826  0.136 -0.304** -0.0881 0.0792 

 (0.130) (0.160) (0.101) (0.0795)  (0.136) (0.145) (0.101) (0.0527) 

Age 0.0515 0.0516 0.0118 -0.0439*  -0.0991** 0.00231 0.00644 -0.0395** 

 (0.0463) (0.0457) (0.0417) (0.0242)  (0.0485) (0.0414) (0.0417) (0.0160) 

Econ 0.225 0.195 0.0157 0.0600  -0.176 -0.165 -0.0611 0.0228 

 (0.156) (0.135) (0.114)  (0.164) (0.289) (0.135) (0.0756) 

Engineer 0.00339 -0.00320 0.0549 0.194  0.282 -0.185 -0.0122 0.141 

 (0.163) (0.308) (0.141) (0.128)  (0.171) (0.279) (0.141) (0.0850) 

Science 0.660* 0.100 0.207 0.112  0.0133 -0.235 -0.207 0.0734 

 (0.376) (0.350) (0.200) (0.150)  (0.394) (0.317) (0.200) (0.0991) 

σ -0.423 0.221 -0.328 -0.00749  0.0407 0.333 -0.147 0.00232 

 (0.269) (0.367) (0.200) (0.141)  (0.282) (0.333) (0.201) (0.0936) 

α 0.667** 0.737** 0.0102 -0.140  -0.121 -0.459 -0.0838 -0.0915 

 (0.292) (0.354) (0.218) (0.145)  (0.305) (0.321) (0.218) (0.0963) 

λ 0.0323 -0.0284 -0.0580 0.00658  -0.0287 0.0565 0.00229 0.00529 

 (0.0389) (0.0548) (0.0361) (0.0216)  (0.0408) (0.0497) (0.0361) (0.0143) 

Constant -1.935* -1.775* -0.826 0.861  2.357** -0.218 0.295 0.762** 

 (1.071) (0.985) (0.928) (0.523)  (1.122) (0.892) (0.929) (0.347) 

Observations 108 72 108 72  108 72 108 72 

R-squared 0.498 0.641 0.516 0.713  0.371 0.339 0.199 0.418 

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are in parentheses. λ is the average value of its lower and upper bound. We 

also run regression with the lower bound and upper bound of λ, and the results are similar. Degree of mismatch for BOS_I and 

SD_I is the average value after 200 simulations of score distribution. 
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Figure A1: Efficiency result under different scenarios 
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Figure A2: Ex-post fairness (by absolute value of degree of mismatch) 
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Figure A3: Ex-post fairness (by number of blocking pairs) 
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Figure A4: Ex-ante fairness (by absolute value of degree of mismatch) 
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Figure A5: Ex-ante fairness (by number of blocking pairs) 
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